乐中彩票 - 乐中彩票
乐中彩票2023-01-31 16:05

数字技术赋能乡村建设******

  “十四五”期间数字技术赋能乡村建设是重要的理论与实践命题,也是推进农业农村现代化、稳住农业基本盘、破局乡村振兴和共同富裕的重要抓手。2022年召开的中央农村工作会议明确提出,要依靠科技和改革双轮驱动加快建设农业强国。数字技术和平台深度嵌入农业农村发展各领域,以数字创新驱动乡村振兴,重构农村经济发展模式、治理体系、生活方式,能够不断解放农村生产力,优化生产关系,提高生产效率,提升乡村治理效能,补齐农业农村发展短板,促进农民增收致富,满足其对美好生活的需求。

  提升数字包容水平

  党和国家高度重视数字乡村建设工作,自2018年开始已出台系列政策,为数字乡村发展强化了顶层设计。2022年出台的《数字乡村发展行动计划(2022—2025年)》进一步对当前数字乡村发展目标、重点任务等进行了战略部署。据北京大学发布的《县域数字乡村(2020)研究报告》,当前我国数字乡村建设开局良好,基础设施建设、乡村数字经济、乡村数字治理和数字生活各方面都有较快发展。我国行政村“村村通宽带”全面实现,农村地区互联网基础设施进一步改善,数据资源和采集体系、天地空一体化观测体系、农业农村云平台等基础设施建设均在稳步推进。数字技术和平台与农村产业体系、生产体系、经营体系加速融合,持续推进农业全产业链数字化转型。智慧农业、农村电商、数字文旅等新业态、新模式不断涌现,为农村经济发展注入新的活力。数字化治理平台在农村基层治理和公共服务中广泛应用,营造出更加便利宜居的乡村人居环境。但总体上,数字乡村建设仍然呈现东部发展水平较高、中部次之、东北和西部发展滞后的格局。

  互联网技术应用虽然能够提供均等的受益机会,但使用者从中的获益未必是均等的。数字接入、数字资源、数字素养、数字参与等方面的差异,会导致数字使用结果的差异,不同群体、地区、城乡之间存在获取数字红利的差异,即数字鸿沟。我国城市互联网普及率远高于农村,2022年我国互联网普及率为74.4%,农村地区仅为58.8%。虽然当前乡村数字基础设施的地域差距在不断缩小,但更显著的差距则体现在乡村经济数字化和乡村治理数字化方面,这主要是受到区域经济发展和城镇化发展差异的影响。数字技术的应用与维护成本高昂,可能与小农户(尤其是老年农户)实际生产需求和劳动力资本不匹配,从而加剧农业企业、大型农场与小农户之间的数字鸿沟。小农户因资金、数字素养、数字技能、风险承担能力等方面的不足,叠加老龄化因素,使数字就绪程度不高。其数字信息利用方式与其他群体存在差异,因此导致数字利用结果差异。这些数字劣势使数字乡村建设主体呈现非均衡的参与行为,极有可能使小农户在数字经济发展中逐渐边缘化,从而出现系统性社会排斥和数字鸿沟,进一步扩大收入差距,加剧社会阶层分化。

  加快推进乡村建设

  通过数字技术赋能乡村振兴,既要以数字创新驱动农业农村高质量发展和转型,又要不断弥合数字鸿沟,推进数字包容,使所有群体都能够积极参与到数字乡村建设过程中,共享数字红利,实现物质富裕、精神富裕、生态富裕。在实践层面如何实现数字包容?一般认为可通过改善信息技术(ICT)接入来弥合数字接入鸿沟,即改善基础设施建设,提高宽带、网络终端等互联网设施设备的普及率。随着互联网基础设施的进一步普及,ICT接入机会趋于均等,数字鸿沟的内涵进一步深化。相关主体数字资源禀赋或资产存量、数字技能和参与行为等方面的差异,及其导致的参与结果差异也被考虑在内,即存在数字使用鸿沟和数字结果鸿沟。对于数字经济参与主体而言,其自身所具备的资源禀赋,例如信息、知识、技能、产品、服务、时间等“僵化”的资产组合,可通过互联网技术运用和互联网市场交易被激活,通过互联网平台的连通性产生乘数效应。率先掌握“流量”密码,实现互联网资产资本化的群体更能够从数字经济发展中获益。例如,农村电商、农产品网络直播、短视频营销等为农村地区特色产业发展、农民增收致富注入了新动能。

  第一,强化“数字准备”。可以考虑将数字包容纳入数字中国战略,在政策制定中着重考虑农村居民的数字可负担性、数字可获得性、数字能力及其公平性,建立健全相关政策体系。进一步加强乡村数字网络、数字平台、数字服务的接入性、连通性,有效提升乡村网络硬件设施质量,扩大5G、千兆光网、物联网覆盖面,保证信号质量。尤为重要的是,将数字乡村建设融入新型城镇化战略,从而有效降低网络建设、维护成本。通过财政补贴、市场竞价等方式,或与农村金融普惠、精准扶贫等政策相结合,给予相应的数字设备或物资帮扶、补贴、费用减免等,进一步减轻网络接入的经济负担。

  第二,提升“数字就绪度”。帮助群众建立互联网思维方式,从知识、技能和态度方面提升数字能力和自我效能,激发其参与经济社会数字化转型的积极性和自信心,使其具有与数字时代动态适配的能力。因此,需要普及农村数字教育,针对不同特征的群体开展多元化、多层次、多渠道的数字教育。加强信息技术课程教学,开设编程课;开展数字技能教育或者职业教育,使新型农民的职业技能与市场数字化转型的需求相匹配。提供简易、易懂的互联网产品服务指南或课程,社区可开展老年人辅导培训,使其能适应社交、医疗、社保、金融及其他政务村务等方面的数字化转型。广泛开展各类型的农村在线教育,鼓励农民灵活运用互联网自主学习,提高其信息获取能力和信息运用能力,提升其数字安全性和隐私保护意识。

  第三,推进“数字参与”。旨在构建涵盖经济发展、基层治理、社会生活各方面的多元化数字生态系统,通过数字创新与制度创新,在各领域实现数字技术对参与者的数字赋能,推进价值共创和共享,弥合数字鸿沟。这就要求以数字创新激活农村农民发展的积极性,驱动城乡之间要素自由流动;提升数字技术对农村经济社会发展的渗透率;有序推进农业三大体系数字化转型,通过数字技术推广、扩散以及新型经营主体培育,带动小农户与数字农业体系有效衔接。以电商商业模式创新驱动产业链供应链现代化,推进城市农村产品、服务的双向流动,有效连接小农户和大市场,解决两个“一公里”问题。以平台聚合有效整合数字资源,提升不同群体之间的数据连通性,提升基层数字治理效率。鼓励和推动企业的包容性创新,提供优质低价、便捷、无障碍、适老化、安全的数字产品和服务。

  (作者单位:浙江大学中国农村发展研究院;浙江树人学院管理学院)

乐中彩票

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

乐中彩票地图